One Parameter Semigroups in Two Complex Variables

Michael R. Pilla
October 8, 2022
Midwestern Workshop on Asymptotic Analysis; Purdue University, Fort Wayne

Preliminary Definitions

1. A linear fractional map (aka Mobius transformation) is a complex map given by

$$
\frac{a z+b}{c z+d}
$$

where $a d-b c \neq 0$.

Preliminary Definitions

1. A linear fractional map (aka Mobius transformation) is a complex map given by

$$
\frac{a z+b}{c z+d}
$$

where $a d-b c \neq 0$.
2. The unit ball in \mathbb{C}^{N} is given by

$$
\mathbb{B}_{N}=\left\{z \in \mathbb{C}^{N}| | z \mid<1\right\} .
$$

Preliminary Definitions

$T=\left\{\phi: \mathbb{B}_{N} \rightarrow \mathbb{B}_{N} \mid \phi\right.$ nonconstant, analytic, not an automorphism $\}$

Preliminary Definitions

$T=\left\{\phi: \mathbb{B}_{N} \rightarrow \mathbb{B}_{N} \mid \phi\right.$ nonconstant, analytic, not an automorphism $\}$

For $\phi \in T$, it is clear that the set of iterates $\left\{\phi_{n}\right\}$ under composition for $n=0,1,2, \ldots$, defines a discrete semigroup.

Preliminary Definitions

$T=\left\{\phi: \mathbb{B}_{N} \rightarrow \mathbb{B}_{N} \mid \phi\right.$ nonconstant, analytic, not an automorphism $\}$

For $\phi \in T$, it is clear that the set of iterates $\left\{\phi_{n}\right\}$ under composition for $n=0,1,2, \ldots$, defines a discrete semigroup.

A one parameter semigroup for a monoid $(S, *)$ is a map $\phi:[0, \infty) \rightarrow S$, such that

1. $\phi(0)=I$.
2. $\phi(s+t)=\phi(s) * \phi(t)$.

One Way to Classify Self Maps of the Disk.

For an analytic self-map ϕ of the disk, either ϕ has a fixed point in the disk or else it doesn't. If ϕ has no fixed point in the disk, then there is a unique fixed point α on the boundary with $d(\alpha) \leq 1$. Let $\phi(\alpha)=\alpha$. We classify as follows:

1. Elliptic: $\alpha \in \mathbb{D}$.
2. Hyperbolic: $|\alpha|=1$ and $d(\alpha)<1$.
3. Parabolic: $|\alpha|=1$ and $d(\alpha)=1$.
where $d(\alpha)$ is the boundary dilation coefficient.

The Fixed-Point Behavior is Important

The one-parameter semigroup $\left\{\phi_{t}\right\}$ depends on its fixed point behavior.

Hyperbolic

Parabolic

Figure 1: Automorphisms of the Disk

Another Way to Classify Self Maps of the Disk: Part I

(Cowen 1981) Under very general conditions, for an analytic map $\phi: \mathbb{D} \rightarrow \mathbb{D}$, there is a domain Ω, either the plane or half-plane, a mapping σ of \mathbb{D} into Ω and a 'model' linear fractional automorphism Φ of Ω such that

$$
\sigma \circ \phi=\Phi \circ \sigma
$$

We have the following commutative diagram

Another Way to Classify Self Maps of the Disk: Part I

(Cowen 1981) Under very general conditions, for an analytic map $\phi: \mathbb{D} \rightarrow \mathbb{D}$, there is a domain Ω, either the plane or half-plane, a mapping σ of \mathbb{D} into Ω and a 'model' linear fractional automorphism Φ of Ω such that

$$
\sigma \circ \phi=\Phi \circ \sigma \rightarrow \sigma \circ \phi_{n}=\Phi_{n} \circ \sigma .
$$

We have the following commutative diagram

Another Way to Classify Self Maps of the Disk: Part II

After appropriate conjugation, one has the following classification:

1. (Plane/Dilation): $\Omega=\mathbb{C}, \sigma(\alpha)=0$ and $\Phi(z)=s z$ with $0<|s|<1$.
2. (Plane/Translation): $\Omega=\mathbb{C}, \sigma(\alpha)=\infty$ and $\Phi(z)=z+1$.
3. (Halfplane/Dilation): $\Omega=\{z \mid \Re z>0\}, \sigma(\alpha)=0$ and $\Phi(z)=s z$ with $0<s<1$.
4. (Halfplane/Translation): $\Omega=\{z \mid \Im z>0\}, \sigma(\alpha)=\infty$ and $\Phi(z)=z \pm 1$.

Example in the Disk.

Example

Let $\phi(z)=\frac{1}{2} z+\frac{1}{2}$ be a self-map of the disk.

Example in the Disk.

Example

Let $\phi(z)=\frac{1}{2} z+\frac{1}{2}$ be a self-map of the disk.
To conform to our model we put $\sigma(z)=1-z$ and $\Phi(z)=\frac{1}{2} z$ which gives us

Example in the Disk.

Example

Let $\phi(z)=\frac{1}{2} z+\frac{1}{2}$ be a self-map of the disk.
To conform to our model we put $\sigma(z)=1-z$ and $\Phi(z)=\frac{1}{2} z$ which gives us

$$
\sigma \circ \phi(z)=1-\left(\frac{1}{2} z+\frac{1}{2}\right)=\frac{1}{2}-\frac{1}{2} z=\frac{1}{2}(1-z)=\Phi \circ \sigma(z) .
$$

Example in the Disk.

Example

Let $\phi(z)=\frac{1}{2} z+\frac{1}{2}$ be a self-map of the disk.
To conform to our model we put $\sigma(z)=1-z$ and $\Phi(z)=\frac{1}{2} z$ which gives us

$$
\sigma \circ \phi(z)=1-\left(\frac{1}{2} z+\frac{1}{2}\right)=\frac{1}{2}-\frac{1}{2} z=\frac{1}{2}(1-z)=\Phi \circ \sigma(z) .
$$

To find $\left\{\phi_{t}\right\}$, we put $\phi_{t}=\sigma^{-1} \circ \Phi_{t} \circ \sigma$ where $\Phi_{t}(z)=\frac{1}{2^{t} z}$.

Example in the Disk.

Example

Let $\phi(z)=\frac{1}{2} z+\frac{1}{2}$ be a self-map of the disk.
To conform to our model we put $\sigma(z)=1-z$ and $\Phi(z)=\frac{1}{2} z$ which gives us

$$
\sigma \circ \phi(z)=1-\left(\frac{1}{2} z+\frac{1}{2}\right)=\frac{1}{2}-\frac{1}{2} z=\frac{1}{2}(1-z)=\Phi \circ \sigma(z) .
$$

To find $\left\{\phi_{t}\right\}$, we put $\phi_{t}=\sigma^{-1} \circ \Phi_{t} \circ \sigma$ where $\Phi_{t}(z)=\frac{1}{2^{t}} z$. Thus we have

$$
\phi_{t}(z)=\frac{1}{2^{t}} z+1-\frac{1}{2^{t}}
$$

Example in the Disk.

Example

Let $\phi(z)=\frac{1}{2} z+\frac{1}{2}$ be a self-map of the disk.

Example in the Disk.

Example

Let $\phi(z)=\frac{1}{2} z+\frac{1}{2}$ be a self-map of the disk.
To conform to our model we put $\sigma(z)=1-z$ and $\Phi(z)=\frac{1}{2} z$ which gives us

Example in the Disk.

Example

Let $\phi(z)=\frac{1}{2} z+\frac{1}{2}$ be a self-map of the disk.
To conform to our model we put $\sigma(z)=1-z$ and $\Phi(z)=\frac{1}{2} z$ which gives us

$$
\sigma \circ \phi(z)=1-\left(\frac{1}{2} z+\frac{1}{2}\right)=\frac{1}{2}-\frac{1}{2} z=\frac{1}{2}(1-z)=\Phi \circ \sigma(z) .
$$

Example in the Disk.

Example

Let $\phi(z)=\frac{1}{2} z+\frac{1}{2}$ be a self-map of the disk.
To conform to our model we put $\sigma(z)=1-z$ and $\Phi(z)=\frac{1}{2} z$ which gives us

$$
\sigma \circ \phi(z)=1-\left(\frac{1}{2} z+\frac{1}{2}\right)=\frac{1}{2}-\frac{1}{2} z=\frac{1}{2}(1-z)=\Phi \circ \sigma(z) .
$$

To find $\left\{\phi_{t}\right\}$, we put $\phi_{t}=\sigma^{-1} \circ \Phi_{t} \circ \sigma$ where $\Phi_{t}(z)=\frac{1}{2^{t} z}$.

Example in the Disk.

Example

Let $\phi(z)=\frac{1}{2} z+\frac{1}{2}$ be a self-map of the disk.
To conform to our model we put $\sigma(z)=1-z$ and $\Phi(z)=\frac{1}{2} z$ which gives us

$$
\sigma \circ \phi(z)=1-\left(\frac{1}{2} z+\frac{1}{2}\right)=\frac{1}{2}-\frac{1}{2} z=\frac{1}{2}(1-z)=\Phi \circ \sigma(z) .
$$

To find $\left\{\phi_{t}\right\}$, we put $\phi_{t}=\sigma^{-1} \circ \Phi_{t} \circ \sigma$ where $\Phi_{t}(z)=\frac{1}{2^{t}} z$. Thus we have

$$
\phi_{t}(z)=\frac{1}{2^{t}} z+1-\frac{1}{2^{t}}
$$

Let ϕ be an analytic self map of \mathbb{B}_{N}.

1. If ϕ is a fixed point free self-map of \mathbb{B}_{N}, then there exists a unique point α on the boundary such that the iterates of ϕ converge uniformly to α on compact subsets of \mathbb{B}_{N}. We call this the Denjoy-Wolff point. (MacCluer 1982)

Pivot to \mathbb{B}_{N}.

Let ϕ be an analytic self map of \mathbb{B}_{N}.

1. If ϕ is a fixed point free self-map of \mathbb{B}_{N}, then there exists a unique point α on the boundary such that the iterates of ϕ converge uniformly to α on compact subsets of \mathbb{B}_{N}. We call this the Denjoy-Wolff point. (MacCluer 1982)
2. For the continuous semigroup $\left\{\phi_{t}\right\}$, either all iterates have a common fixed point in \mathbb{B}_{N} or all iterates (for $t>0$) have no fixed points in \mathbb{B}_{N} and share the same Denjoy-Wolff point on the boundary (Abate, 1989).

Linear Fractional Maps in Higher Dimensions

Definition

We say ϕ is a linear fractional map in \mathbb{C}^{N} if

$$
\phi(z)=\frac{A z+B}{\langle z, C\rangle+D}
$$

where A is an $N \times N$ matrix, B and C are column vectors in \mathbb{C}^{N}, $D \in \mathbb{C}$, and $\langle\cdot, \cdot\rangle$ is the standard inner product.

One Way to Classify Self Maps of the Unit Ball

For an analytic self-map ϕ of \mathbb{B}_{N} with Denjoy-Wolff point at α, we classify as follows:

1. Elliptic: $\alpha \in \mathbb{B}_{N}$.
2. Hyperbolic: $|\alpha|=1$ and $d(\alpha)<1$.
3. Parabolic: $|\alpha|=1$ and $d(\alpha)=1$.

One Way to Classify Self Maps of the Unit Ball

For an analytic self-map ϕ of \mathbb{B}_{N} with Denjoy-Wolff point at α, we classify as follows:

1. Elliptic: $\alpha \in \mathbb{B}_{N}$.
2. Hyperbolic: $|\alpha|=1$ and $d(\alpha)<1$.
3. Parabolic: $|\alpha|=1$ and $d(\alpha)=1$.

Infinitesimal generators associated with linear fractional self maps of \mathbb{B}_{N} have been characterized (Bracci, Contreras, Díaz-Madrigal, 2007).

Another Way to Classify Self Maps of the Unit Ball

Our model theory is not adequate for \mathbb{B}_{N}. However, one can show that the model theory extends in \mathbb{B}_{2} for certain maps (Cowen, et al 2006). The domains are the whole space \mathbb{C}^{N}, half space $\Omega=\left\{\left(z_{1}, z_{2}\right) \in \mathbb{C}^{2} \mid \Re\left(z_{1}\right)>0\right\}$, and Siegel half space
$\Omega=\left\{\left(z_{1}, z_{2}\right) \in \mathbb{C}^{2}\left|\Re\left(z_{1}\right)>\left|z_{2}\right|^{2}\right\}\right.$.

Another Way to Classify Self Maps of the Unit Ball

Our model theory is not adequate for \mathbb{B}_{N}. However, one can show that the model theory extends in \mathbb{B}_{2} for certain maps (Cowen, et al 2006). The domains are the whole space \mathbb{C}^{N}, half space
$\Omega=\left\{\left(z_{1}, z_{2}\right) \in \mathbb{C}^{2} \mid \Re\left(z_{1}\right)>0\right\}$, and Siegel half space
$\Omega=\left\{\left(z_{1}, z_{2}\right) \in \mathbb{C}^{2}\left|\Re\left(z_{1}\right)>\left|z_{2}\right|^{2}\right\}\right.$.
Our elliptic maps admits one possible case.

Another Way to Classify Self Maps of the Unit Ball

Our model theory is not adequate for \mathbb{B}_{N}. However, one can show that the model theory extends in \mathbb{B}_{2} for certain maps (Cowen, et al 2006). The domains are the whole space \mathbb{C}^{N}, half space
$\Omega=\left\{\left(z_{1}, z_{2}\right) \in \mathbb{C}^{2} \mid \Re\left(z_{1}\right)>0\right\}$, and Siegel half space
$\Omega=\left\{\left(z_{1}, z_{2}\right) \in \mathbb{C}^{2}\left|\Re\left(z_{1}\right)>\left|z_{2}\right|^{2}\right\}\right.$.
Our elliptic maps admits one possible case.
Our hyperbolic maps admit two.

Another Way to Classify Self Maps of the Unit Ball

Our model theory is not adequate for \mathbb{B}_{N}. However, one can show that the model theory extends in \mathbb{B}_{2} for certain maps (Cowen, et al 2006). The domains are the whole space \mathbb{C}^{N}, half space
$\Omega=\left\{\left(z_{1}, z_{2}\right) \in \mathbb{C}^{2} \mid \Re\left(z_{1}\right)>0\right\}$, and Siegel half space
$\Omega=\left\{\left(z_{1}, z_{2}\right) \in \mathbb{C}^{2}\left|\Re\left(z_{1}\right)>\left|z_{2}\right|^{2}\right\}\right.$.
Our elliptic maps admits one possible case.
Our hyperbolic maps admit two.
Our parabolic maps admit four.

Another Way to Classify Self Maps of the Unit Ball

Our model theory is not adequate for \mathbb{B}_{N}. However, one can show that the model theory extends in \mathbb{B}_{2} for certain maps (Cowen, et al 2006). The domains are the whole space \mathbb{C}^{N}, half space
$\Omega=\left\{\left(z_{1}, z_{2}\right) \in \mathbb{C}^{2} \mid \Re\left(z_{1}\right)>0\right\}$, and Siegel half space
$\Omega=\left\{\left(z_{1}, z_{2}\right) \in \mathbb{C}^{2}\left|\Re\left(z_{1}\right)>\left|z_{2}\right|^{2}\right\}\right.$.
Our elliptic maps admits one possible case.
Our hyperbolic maps admit two.
Our parabolic maps admit four.
We are presuming that our analytic map ϕ has one of the above models.

Linear Fractional Example

Example
 Let $\phi(z)=\left(\frac{z_{1}+3}{4}, \frac{z_{2}}{2}\right)$. What is the Denjoy-Wolff point?

Linear Fractional Example

Example

Let $\phi(z)=\left(\frac{z_{1}+3}{4}, \frac{z_{2}}{2}\right)$. What is the Denjoy-Wolff point? To conform to our model we put $\sigma(z)=e_{1}-z$ and $\Phi(z)=\left(\frac{1}{4} z_{1}, \frac{1}{2} z_{2}\right)$ which gives us
$\sigma \circ \phi(z)=\left(1-\frac{z_{1}+3}{4},-\frac{z_{2}}{2}\right)=\left(\frac{1}{4}\left(1-z_{1}\right),-\frac{1}{2} z_{2}\right)=\Phi \circ \sigma(z)$.

The Associatied Matrix and Jordan Canonical Form

Let ϕ be an LFM, then the associated matrix is defined as

$$
m_{\phi}=\left(\begin{array}{cc}
A & B \\
C^{*} & D
\end{array}\right)
$$

The Associatied Matrix and Jordan Canonical Form

Let ϕ be an LFM, then the associated matrix is defined as

$$
m_{\phi}=\left(\begin{array}{cc}
A & B \\
C^{*} & D
\end{array}\right) .
$$

A routine calculation shows that

$$
m_{\phi_{1} \circ \phi_{2}}=m_{\phi_{1}} m_{\phi_{2}} \quad \text { and } \quad m_{\phi^{-1}}=\left(m_{\phi}\right)^{-1} .
$$

The Associatied Matrix and Jordan Canonical Form

Let ϕ be an LFM, then the associated matrix is defined as

$$
m_{\phi}=\left(\begin{array}{cc}
A & B \\
C^{*} & D
\end{array}\right)
$$

A routine calculation shows that

$$
m_{\phi_{1} \circ \phi_{2}}=m_{\phi_{1}} m_{\phi_{2}} \quad \text { and } \quad m_{\phi^{-1}}=\left(m_{\phi}\right)^{-1}
$$

Recall that Jordan Canonical Form says we can 'factor'

$$
m_{\phi}=S \wedge S^{-1} \rightarrow m_{\phi_{n}}=\left(m_{\phi}\right)^{n}=\left(S \wedge S^{-1}\right)^{n}=S \wedge^{n} S^{-1}
$$

where the columns of S are (generalized) eigenvectors of m_{ϕ} and Λ is in Jordan form.

Showing $\phi_{\text {tos }}=\phi_{t+s}$

Diagonizable Case:

$$
m_{\phi_{t}}=m_{\phi}^{t}=S \wedge^{t} S^{-1}=S\left(\begin{array}{ccc}
\lambda_{1}^{t} & 0 & 0 \\
0 & \lambda_{2}^{t} & 0 \\
0 & 0 & \lambda_{3}^{t}
\end{array}\right) S^{-1}
$$

Showing $\phi_{\text {tos }}=\phi_{t+s}$

Diagonizable Case:

$$
m_{\phi_{t}}=m_{\phi}^{t}=S \Lambda^{t} S^{-1}=S\left(\begin{array}{ccc}
\lambda_{1}^{t} & 0 & 0 \\
0 & \lambda_{2}^{t} & 0 \\
0 & 0 & \lambda_{3}^{t}
\end{array}\right) S^{-1}
$$

We then have for $s, t \geq 0$,

$$
m_{\phi_{t}} m_{\phi_{s}}=S \Lambda^{t} S^{-1} S \Lambda^{s} S^{-1}=S \Lambda^{t+s} S^{-1}=m_{\phi_{t+s}}
$$

The Case of a 3×3 Jordan Block

$$
\Lambda=\left(\begin{array}{lll}
1 & \lambda & 0 \\
0 & 1 & \lambda \\
0 & 0 & 1
\end{array}\right)
$$

The Case of a 3×3 Jordan Block

$$
\Lambda=\left(\begin{array}{lll}
1 & \lambda & 0 \\
0 & 1 & \lambda \\
0 & 0 & 1
\end{array}\right) \rightarrow \Lambda^{n}=\left(\begin{array}{ccc}
1 & \lambda n & \frac{\lambda^{2} n(n-1)}{2} \\
0 & 1 & \lambda_{n} \\
0 & 0 & 1
\end{array}\right) .
$$

The Case of a 3×3 Jordan Block

$$
\Lambda=\left(\begin{array}{ccc}
1 & \lambda & 0 \\
0 & 1 & \lambda \\
0 & 0 & 1
\end{array}\right) \rightarrow \Lambda^{n}=\left(\begin{array}{ccc}
1 & \lambda n & \frac{\lambda^{2} n(n-1)}{2} \\
0 & 1 & \lambda_{n} \\
0 & 0 & 1
\end{array}\right) .
$$

Exercise: $\Lambda^{t} \Lambda^{s}=\Lambda^{t+s}$.

Example

Example

$$
\phi(z)=\left(\frac{z_{1}+2 z_{2}+1}{-z_{1}+2 z_{2}+3}, \frac{-2 z_{1}+2 z_{2}+2}{-z_{1}+2 z_{2}+3}\right)
$$

Example

Example

$$
\begin{aligned}
& \phi(z)=\left(\frac{z_{1}+2 z_{2}+1}{-z_{1}+2 z_{2}+3}, \frac{-2 z_{1}+2 z_{2}+2}{-z_{1}+2 z_{2}+3}\right) \\
& =\frac{\left(\begin{array}{rr}
1 & 2 \\
-2 & 2
\end{array}\right)\binom{z_{1}}{z_{2}}+\binom{1}{2}}{(-1,2)^{T}\left(z_{1}, z_{2}\right)+3}=\frac{A z+B}{\langle z, C\rangle+D} .
\end{aligned}
$$

Example

Example

$$
\begin{aligned}
& \phi(z)=\left(\frac{z_{1}+2 z_{2}+1}{-z_{1}+2 z_{2}+3}, \frac{-2 z_{1}+2 z_{2}+2}{-z_{1}+2 z_{2}+3}\right) \\
& =\frac{\left(\begin{array}{rr}
1 & 2 \\
-2 & 2
\end{array}\right)\binom{z_{1}}{z_{2}}+\binom{1}{2}}{(-1,2)^{T}\left(z_{1}, z_{2}\right)+3}=\frac{A z+B}{\langle z, C\rangle+D} .
\end{aligned}
$$

Thus the associated matrix m_{ϕ} is given by
$\left(\begin{array}{cc}A & B \\ C^{*} & D\end{array}\right)=\left(\begin{array}{rrr}1 & 2 & 1 \\ -2 & 2 & 2 \\ -1 & 2 & 3\end{array}\right)$

Example

Example

$$
\begin{aligned}
& \phi(z)=\left(\frac{z_{1}+2 z_{2}+1}{-z_{1}+2 z_{2}+3}, \frac{-2 z_{1}+2 z_{2}+2}{-z_{1}+2 z_{2}+3}\right) \\
& =\frac{\left(\begin{array}{rr}
1 & 2 \\
-2 & 2
\end{array}\right)\binom{z_{1}}{z_{2}}+\binom{1}{2}}{(-1,2)^{T}\left(z_{1}, z_{2}\right)+3}=\frac{A z+B}{\langle z, C\rangle+D} .
\end{aligned}
$$

Thus the associated matrix m_{ϕ} is given by

$$
\left(\begin{array}{cc}
A & B \\
C^{*} & D
\end{array}\right)=\left(\begin{array}{rrr}
1 & 2 & 1 \\
-2 & 2 & 2 \\
-1 & 2 & 3
\end{array}\right)=\left(\begin{array}{rrr}
1 & 0 & -\frac{1}{4} \\
0 & \frac{1}{2} & -\frac{1}{8} \\
1 & 0 & 0
\end{array}\right)\left(\begin{array}{lll}
2 & 1 & 0 \\
0 & 2 & 1 \\
0 & 0 & 2
\end{array}\right)\left(\begin{array}{rrr}
0 & 0 & 1 \\
-1 & 2 & 1 \\
-4 & 0 & 4
\end{array}\right)
$$

Example Continued

Example

$$
\begin{aligned}
m_{\phi_{t}} & =\left(\begin{array}{ccc}
1 & 0 & -\frac{1}{4} \\
0 & \frac{1}{2} & -\frac{1}{8} \\
1 & 0 & 0
\end{array}\right)\left(\begin{array}{llc}
1 & \frac{t}{2} & \frac{t(t-1)}{8} \\
0 & 1 & \frac{t}{2} \\
0 & 0 & 1
\end{array}\right)\left(\begin{array}{rrr}
0 & 0 & 1 \\
-1 & 2 & 1 \\
-4 & 0 & 4
\end{array}\right) \\
& =\left(\begin{array}{ccc}
\frac{2-t^{2}}{2} & t & \frac{t^{2}}{2} \\
-t & 1 & t \\
-\frac{t^{2}}{2} & t & \frac{t^{2}+2}{2}
\end{array}\right)
\end{aligned}
$$

Example Continued

Example

$$
\begin{aligned}
m_{\phi_{t}} & =\left(\begin{array}{ccc}
1 & 0 & -\frac{1}{4} \\
0 & \frac{1}{2} & -\frac{1}{8} \\
1 & 0 & 0
\end{array}\right)\left(\begin{array}{rrr}
1 & \frac{t}{2} & \frac{t(t-1)}{8} \\
0 & 1 & \frac{t}{2} \\
0 & 0 & 1
\end{array}\right)\left(\begin{array}{rrr}
0 & 0 & 1 \\
-1 & 2 & 1 \\
-4 & 0 & 4
\end{array}\right) \\
& =\left(\begin{array}{ccc}
\frac{2-t^{2}}{2} & t & \frac{t^{2}}{2} \\
-t & 1 & t \\
-\frac{t^{2}}{2} & t & \frac{t^{2}+2}{2}
\end{array}\right) \\
\phi_{t}\left(z_{1}, z_{2}\right) & =\left(\frac{\left(2-t^{2}\right) z_{1}+2 t z_{2}+t^{2}}{-t^{2} z_{1}+2 t z_{2}+t^{2}+2}, \frac{-2 t z_{1}+2 z_{2}+2 t}{-t^{2} z_{1}+2 t z_{2}+t^{2}+2}\right) .
\end{aligned}
$$

Example Continued

Example

$$
\begin{aligned}
m_{\phi_{t}} & =\left(\begin{array}{ccc}
1 & 0 & -\frac{1}{4} \\
0 & \frac{1}{2} & -\frac{1}{8} \\
1 & 0 & 0
\end{array}\right)\left(\begin{array}{rrr}
1 & \frac{t}{2} & \frac{t(t-1)}{8} \\
0 & 1 & \frac{t}{2} \\
0 & 0 & 1
\end{array}\right)\left(\begin{array}{rrr}
0 & 0 & 1 \\
-1 & 2 & 1 \\
-4 & 0 & 4
\end{array}\right) \\
& =\left(\begin{array}{ccc}
\frac{2-t^{2}}{2} & t & \frac{t^{2}}{2} \\
-t & 1 & t \\
-\frac{t^{2}}{2} & t & \frac{t^{2}+2}{2}
\end{array}\right) \\
\phi_{t}\left(z_{1}, z_{2}\right) & =\left(\frac{\left(2-t^{2}\right) z_{1}+2 t z_{2}+t^{2}}{-t^{2} z_{1}+2 t z_{2}+t^{2}+2}, \frac{-2 t z_{1}+2 z_{2}+2 t}{-t^{2} z_{1}+2 t z_{2}+t^{2}+2}\right) .
\end{aligned}
$$

It is a straightforward calculation to see that $\phi_{0}=I$ and $\phi_{1}=\phi$.

Nonrational Example

$$
\text { Let } \phi(z)=\left(\phi_{1}\left(z_{1}, z_{2}\right), \phi_{2}\left(z_{1}, z_{2}\right)\right) \text { where }
$$

Nonrational Example

Let $\phi(z)=\left(\phi_{1}\left(z_{1}, z_{2}\right), \phi_{2}\left(z_{1}, z_{2}\right)\right)$ where

$$
\begin{aligned}
& \phi_{1}(z)=\frac{15 z_{1}+z_{2}+1+4 \sqrt{2 z_{2}\left(z_{1}+1\right)}+4 \sqrt{2\left(1-z_{1}^{2}\right)}+2 \sqrt{z_{2}\left(1-z_{1}\right)}}{-z_{1}+z_{2}+17+4 \sqrt{2 z_{2}\left(z_{1}+1\right)}+4 \sqrt{2\left(1-z_{1}^{2}\right)}+2 \sqrt{z_{2}\left(1-z_{1}\right)}} \\
& \phi_{2}(z)=\frac{16 z_{2}-z_{1}+1+8 \sqrt{z_{2}\left(1-z_{1}\right)}}{-z_{1}+z_{2}+17+4 \sqrt{2 z_{2}\left(z_{1}+1\right)}+4 \sqrt{2\left(1-z_{1}^{2}\right)}+2 \sqrt{z_{2}\left(1-z_{1}\right) .}}
\end{aligned}
$$

Nonrational Example II

Define the following:

$$
\begin{aligned}
A:= & 1024 z_{1}+64 t^{2} z_{2}+t^{2}(t+7)^{2}\left(1-z_{1}\right)+256 t \sqrt{2 z_{2}\left(z_{1}+1\right)} \\
& +32 t(t+7) \sqrt{2\left(1-z_{1}^{2}\right)}+16 t^{2}(t+7) \sqrt{z_{2}\left(1-z_{1}\right)} \\
B:= & 1024+64 t^{2} z_{2}+t^{2}(t+7)^{2}\left(1-z_{1}\right)+256 t \sqrt{2 z_{2}\left(z_{1}+1\right)} \\
& +32 t(t+7) \sqrt{2\left(1-z_{1}^{2}\right)}+16 t^{2}(t+7) \sqrt{z_{2}\left(1-z_{1}\right)} \\
C:= & 64 t^{2}\left(1-z_{1}\right)+1024 z_{2}+512 t \sqrt{z_{2}\left(1-z_{1}\right)} \\
D:= & 1024+64 t^{2} z_{2}+t^{2}(t+7)^{2}\left(1-z_{1}\right)+256 t \sqrt{2 z_{2}\left(z_{1}+1\right)} \\
& +32 t(t+7) \sqrt{2\left(1-z_{1}^{2}\right)}+16 t^{2}(t+7) \sqrt{z_{2}\left(1-z_{1}\right) .}
\end{aligned}
$$

Constructing the Semigroup

A calculation shows $\phi_{t}(z)=\left(\phi_{1_{t}}(z), \phi_{2_{t}}(z)\right)$ where $\phi_{1_{t}}(z)$ and $\phi_{2_{t}}(z)$ are given by

$$
\phi_{1_{t}}(z)=\frac{A}{B}
$$

and

$$
\phi_{2_{t}}(z)=\frac{C}{D}
$$

Constructing the Semigroup

A calculation shows $\phi_{t}(z)=\left(\phi_{1_{t}}(z), \phi_{2_{t}}(z)\right)$ where $\phi_{1_{t}}(z)$ and $\phi_{2_{t}}(z)$ are given by

$$
\phi_{1_{t}}(z)=\frac{A}{B}
$$

and

$$
\phi_{2_{t}}(z)=\frac{C}{D}
$$

A calculation shows that this is a one-parameter semigroup for $\phi: \mathbb{B}_{2} \rightarrow \mathbb{B}_{2}$.

Thank You!

Thank You!

Questions?

References

M. Abate. Iteration Theory of Holomorphic Maps on Taut Manifolds, Mediterranean Press, Rende, Cosenza, 1989.
国
E. Berkson and H. Porta. Semigroups of Analytic Functions and Composition Operators,
Michigan Math. J. 25 (1978) 111-115.
F. Bracci, M. Contreras, S. Díaz-Madrigal. Classification of Semigroups of Linear Fractional Maps in the Unit Ball,
Adv. Math., 208, 1 (2007) 318-350.
C. Cowen, D. Crosby, T. Horne, R. Ortiz Albino, A. Richman, Y. Yeow, B. Zerbe. Geometric Properties of Linear Fractional Maps. Indiana University Mathematics Journal, Vol. 55m No. 2, pp.553-577 (2006).
目
C. Cowen. Iteration and the Solution of Functional Equations for Functions Analytic in the Unit Disk
Trans. Amer. Math. Soc. 265, No. 1 (1981) 69-95.

References

R
C. Cowen and B. MacCluer, Linear Fractional Maps of the Ball and Their Composition Operators,
Acta Sci. Math (szeged), 66 (2000), 351-376.
K. Engel and R. Nagel. One-Parameter Semigroups for Linear Evolution Equations,
Graduate Texts in Mathematics, Springer-Verlag New York, 194 (2000).
品
C. de Fabritiis On the Linearization of a Class of Semigroups on the Unit Ball of \mathbb{C}^{n},
Ann. Mat. Pura Appl. (IV) 166 (1994) 363-379.
B. MacCluer. Iterates of holomorphic self-maps of the unit ball in \mathbb{C}^{N}, Michigan Mat. J. 30, no. 1 (1983), 97-106.

