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Preliminary Definitions

1. A linear fractional map (aka Mobius transformation) is a

complex map given by

az + b

cz + d

where ad − bc 6= 0.

2. The unit ball in CN is given by

BN = {z ∈ CN | |z | < 1}.
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Preliminary Definitions

T = {φ : BN → BN | φ nonconstant, analytic, not an automorphism}

For φ ∈ T , it is clear that the set of iterates {φn} under

composition for n = 0, 1, 2, ..., defines a discrete semigroup.

A one parameter semigroup for a monoid (S , ∗) is a map

φ : [0,∞)→ S , such that

1. φ(0) = I .

2. φ(s + t) = φ(s) ∗ φ(t).
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One Way to Classify Self Maps of the Disk.

For an analytic self-map φ of the disk, either φ has a fixed point in

the disk or else it doesn’t. If φ has no fixed point in the disk, then

there is a unique fixed point α on the boundary with d(α) ≤ 1.

Let φ(α) = α. We classify as follows:

1. Elliptic: α ∈ D.

2. Hyperbolic: |α| = 1 and d(α) < 1.

3. Parabolic: |α| = 1 and d(α) = 1.

where d(α) is the boundary dilation coefficient.
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The Fixed-Point Behavior is Important

The one-parameter semigroup {φt} depends on its fixed point

behavior.

Figure 1: Automorphisms of the Disk
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Another Way to Classify Self Maps of the Disk: Part I

(Cowen 1981) Under very general conditions, for an analytic map

φ : D→ D, there is a domain Ω, either the plane or half-plane, a

mapping σ of D into Ω and a ‘model’ linear fractional

automorphism Φ of Ω such that

σ ◦ φ = Φ ◦ σ

→ σ ◦ φn = Φn ◦ σ.

We have the following commutative diagram

D φ
//

σ
��

D
σ
��

Ω
Φ // Ω
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Another Way to Classify Self Maps of the Disk: Part II

After appropriate conjugation, one has the following classification:

1. (Plane/Dilation): Ω = C, σ(α) = 0 and Φ(z) = sz with

0 < |s| < 1.

2. (Plane/Translation): Ω = C, σ(α) =∞ and Φ(z) = z + 1.

3. (Halfplane/Dilation): Ω = {z | <z > 0}, σ(α) = 0 and

Φ(z) = sz with 0 < s < 1.

4. (Halfplane/Translation): Ω = {z | =z > 0}, σ(α) =∞ and

Φ(z) = z ± 1.
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Example in the Disk.

Example
Let φ(z) = 1

2z + 1
2 be a self-map of the disk.

To conform to our model we put σ(z) = 1− z and Φ(z) = 1
2z

which gives us

σ ◦ φ(z) = 1−
(

1

2
z +

1

2

)
=

1

2
− 1

2
z =

1

2
(1− z) = Φ ◦ σ(z).

To find {φt}, we put φt = σ−1 ◦ Φt ◦ σ where Φt(z) = 1
2t z . Thus

we have

φt(z) =
1

2t
z + 1− 1

2t
.
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Pivot to BN .

Let φ be an analytic self map of BN .

1. If φ is a fixed point free self-map of BN , then there exists a

unique point α on the boundary such that the iterates of φ

converge uniformly to α on compact subsets of BN . We call

this the Denjoy-Wolff point. (MacCluer 1982)

2. For the continuous semigroup {φt}, either all iterates have a

common fixed point in BN or all iterates (for t > 0) have no

fixed points in BN and share the same Denjoy-Wolff point on

the boundary (Abate, 1989).
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Linear Fractional Maps in Higher Dimensions

Definition
We say φ is a linear fractional map in CN if

φ(z) =
Az + B

〈z ,C 〉+ D

where A is an N × N matrix, B and C are column vectors in CN ,

D ∈ C, and 〈·, ·〉 is the standard inner product.

11 / 25



One Way to Classify Self Maps of the Unit Ball

For an analytic self-map φ of BN with Denjoy-Wolff point at α, we

classify as follows:

1. Elliptic: α ∈ BN .

2. Hyperbolic: |α| = 1 and d(α) < 1.

3. Parabolic: |α| = 1 and d(α) = 1.

Infinitesimal generators associated with linear fractional self maps

of BN have been characterized (Bracci, Contreras, D́ıaz-Madrigal,

2007).
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Another Way to Classify Self Maps of the Unit Ball

Our model theory is not adequate for BN . However, one can show

that the model theory extends in B2 for certain maps (Cowen, et al

2006). The domains are the whole space CN , half space

Ω = {(z1, z2) ∈ C2 | <(z1) > 0}, and Siegel half space

Ω = {(z1, z2) ∈ C2 | <(z1) > |z2|2}.

Our elliptic maps admits one possible case.

Our hyperbolic maps admit two.

Our parabolic maps admit four.

We are presuming that our analytic map φ has one of the above

models.

13 / 25



Another Way to Classify Self Maps of the Unit Ball

Our model theory is not adequate for BN . However, one can show

that the model theory extends in B2 for certain maps (Cowen, et al

2006). The domains are the whole space CN , half space

Ω = {(z1, z2) ∈ C2 | <(z1) > 0}, and Siegel half space

Ω = {(z1, z2) ∈ C2 | <(z1) > |z2|2}.

Our elliptic maps admits one possible case.

Our hyperbolic maps admit two.

Our parabolic maps admit four.

We are presuming that our analytic map φ has one of the above

models.

13 / 25



Another Way to Classify Self Maps of the Unit Ball

Our model theory is not adequate for BN . However, one can show

that the model theory extends in B2 for certain maps (Cowen, et al

2006). The domains are the whole space CN , half space

Ω = {(z1, z2) ∈ C2 | <(z1) > 0}, and Siegel half space

Ω = {(z1, z2) ∈ C2 | <(z1) > |z2|2}.

Our elliptic maps admits one possible case.

Our hyperbolic maps admit two.

Our parabolic maps admit four.

We are presuming that our analytic map φ has one of the above

models.

13 / 25



Another Way to Classify Self Maps of the Unit Ball

Our model theory is not adequate for BN . However, one can show

that the model theory extends in B2 for certain maps (Cowen, et al

2006). The domains are the whole space CN , half space

Ω = {(z1, z2) ∈ C2 | <(z1) > 0}, and Siegel half space

Ω = {(z1, z2) ∈ C2 | <(z1) > |z2|2}.

Our elliptic maps admits one possible case.

Our hyperbolic maps admit two.

Our parabolic maps admit four.

We are presuming that our analytic map φ has one of the above

models.

13 / 25



Another Way to Classify Self Maps of the Unit Ball

Our model theory is not adequate for BN . However, one can show

that the model theory extends in B2 for certain maps (Cowen, et al

2006). The domains are the whole space CN , half space

Ω = {(z1, z2) ∈ C2 | <(z1) > 0}, and Siegel half space

Ω = {(z1, z2) ∈ C2 | <(z1) > |z2|2}.

Our elliptic maps admits one possible case.

Our hyperbolic maps admit two.

Our parabolic maps admit four.

We are presuming that our analytic map φ has one of the above

models.

13 / 25



Linear Fractional Example

Example
Let φ(z) =

(
z1+3

4 , z2
2

)
. What is the Denjoy-Wolff point?

To

conform to our model we put σ(z) = e1 − z and Φ(z) = ( 1
4z1,

1
2z2)

which gives us

σ ◦ φ(z) =

(
1− z1 + 3

4
,−z2

2

)
=

(
1

4
(1− z1),−1

2
z2

)
= Φ ◦ σ(z).
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The Associatied Matrix and Jordan Canonical Form

Let φ be an LFM, then the associated matrix is defined as

mφ =

(
A B

C ∗ D

)
.

A routine calculation shows that

mφ1◦φ2 = mφ1mφ2 and mφ−1 = (mφ)−1.

Recall that Jordan Canonical Form says we can ‘factor’

mφ = SΛS−1

→ mφn = (mφ)n =
(
SΛS−1

)n
= SΛnS−1.

where the columns of S are (generalized) eigenvectors of mφ and Λ

is in Jordan form.
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Showing φt◦s = φt+s

Diagonizable Case:

mφt = mt
φ = SΛtS−1 = S

λt1 0 0

0 λt2 0

0 0 λt3

S−1.

We then have for s, t ≥ 0,

mφtmφs = SΛtS−1SΛsS−1 = SΛt+sS−1 = mφt+s
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The Case of a 3x3 Jordan Block

Λ =

1 λ 0

0 1 λ

0 0 1



→ Λn =

1 λn λ2n(n−1)
2

0 1 λn

0 0 1

 .

Exercise: ΛtΛs = Λt+s .
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Example

Example

φ(z) =

(
z1 + 2z2 + 1

−z1 + 2z2 + 3
,
−2z1 + 2z2 + 2

−z1 + 2z2 + 3

)

=

(
1 2

−2 2

)(
z1

z2

)
+

(
1

2

)
(−1, 2)T (z1, z2) + 3

=
Az + B

〈z ,C 〉+ D
.

Thus the associated matrix mφ is given by

(
A B

C ∗ D

)
=

 1 2 1

−2 2 2

−1 2 3

 =

1 0 −1
4

0 1
2 −1

8

1 0 0


2 1 0

0 2 1

0 0 2


 0 0 1

−1 2 1

−4 0 4

 .
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Example Continued

Example

mφt =

1 0 −1
4

0 1
2 −1

8

1 0 0


1 t

2
t(t−1)

8

0 1 t
2

0 0 1


 0 0 1

−1 2 1

−4 0 4


=


2−t2

2 t t2

2

−t 1 t

− t2

2 t t2+2
2



φt(z1, z2) =

(
(2− t2)z1 + 2tz2 + t2

−t2z1 + 2tz2 + t2 + 2
,
−2tz1 + 2z2 + 2t

−t2z1 + 2tz2 + t2 + 2

)
.

It is a straightforward calculation to see that φ0 = I and φ1 = φ.
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−t2z1 + 2tz2 + t2 + 2

)
.

It is a straightforward calculation to see that φ0 = I and φ1 = φ.
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Nonrational Example

Let φ(z) = (φ1(z1, z2), φ2(z1, z2)) where

φ1(z) =
15z1 + z2 + 1 + 4

√
2z2(z1 + 1) + 4

√
2(1− z2

1 ) + 2
√
z2(1− z1)

−z1 + z2 + 17 + 4
√

2z2(z1 + 1) + 4
√

2(1− z2
1 ) + 2

√
z2(1− z1)

φ2(z) =
16z2 − z1 + 1 + 8

√
z2(1− z1)

−z1 + z2 + 17 + 4
√

2z2(z1 + 1) + 4
√

2(1− z2
1 ) + 2

√
z2(1− z1).
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√
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√
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√
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Nonrational Example II

Define the following:

A :=1024z1 + 64t2z2 + t2(t + 7)2(1− z1) + 256t
√

2z2(z1 + 1)

+ 32t(t + 7)
√

2(1− z2
1 ) + 16t2(t + 7)

√
z2(1− z1)

B :=1024 + 64t2z2 + t2(t + 7)2(1− z1) + 256t
√

2z2(z1 + 1)

+ 32t(t + 7)
√

2(1− z2
1 ) + 16t2(t + 7)

√
z2(1− z1)

C :=64t2(1− z1) + 1024z2 + 512t
√
z2(1− z1)

D :=1024 + 64t2z2 + t2(t + 7)2(1− z1) + 256t
√

2z2(z1 + 1)

+ 32t(t + 7)
√

2(1− z2
1 ) + 16t2(t + 7)

√
z2(1− z1).

21 / 25



Constructing the Semigroup

A calculation shows φt(z) = (φ1t (z), φ2t (z)) where φ1t (z) and

φ2t (z) are given by

φ1t (z) =
A

B

and

φ2t (z) =
C

D

A calculation shows that this is a one-parameter semigroup for

φ : B2 → B2.
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Thank You!

Questions?
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